Research interests of the whole group

 

Research interests of the group cover diverse areas of probability theory and its applications including (but not restricted to)

  1. Random fields, Gaussian processes and stochastic geometry
  2. Topology of random systems, topological data analysis
  3. Stochastic partial differential equations
  4. Random structures in combinatorics and statistical mechanics
  5. Statistical mechanics and random media
  6. Markov processes
  7. Queueing theory
  8. Large deviations
  9. Stochastic control
  10. Stochastic analysis and Malliavin calculus in Wiener space
  11. Measure-valued processes and interacting particle systems
  12. Random permutations and random walks on groups
  13. Markov decision processes, game theory
  14. Coagulation-fragmentation processes

 

 

Research interests of each member

 
  • EE= Electrical Engineering
  • IE&M = Industrial Engineering and Management
  • M = Mathematics
 

 

Robert Adler- EE.

 

  1. Random fields
  2. Stochastic geometry
  3. Extremal theory for Gaussian processes
  4. Topology of random systems and topological data analysis

Recent Collaborators

    • Gennady Samorodnitsky (Cornell),
    • Jonathan Taylor (Stanford),
  •       Shmuel Weinberger (Chicago),
  •       Omer Bobrowski (Duke),
  •       Primoz Skraba (Ljubljana),
  •       Sam Kou (Harvard),
  •       Yuliy Baryshnikov (Champaign-Urbanna)

 

Rami Atar- EE

 

  1. Stochastic processes, optimal control theory
  2. Diffusion limits and asymptotically optimal schemes for queueing models in heavy traffic
  3. Large and moderate deviation analysis for stochastic networks, and its relation to control and differential games
  4. Control theory and its relation to partial differential equations, especially HJB equations

Recent Collaborators

    • Amarjit Budhiraja,
  •       Paul Dupuis,
  •       Kavita Ramanan,
  •       Marty Reiman,
  •       Adam Shwartz,
  •       Haya Kaspi

 

Omer Bobrowski- EE

 

  1. Stochastic topology. More specifically - algebraic topology of random fields and complexes.
  2. Statistical theory for topological data analysis (TDA).
  3. Statistical models and applications for TDA.
  4. Probability and stochastic processes.

 

Nick Crawford - M

Mathematical Physics.  Equilibrium and Non-equilibrium Statistical Mechanics.  Driven particle systems.  Classical Models of Anderson Localization/Diffusion.  Mass Generation in 2d Stat. Mech.  Higher Teichmuller Theory.  Climbing.

 

Recent Collaborators

    • Dmitry Ioffe (The Technion),
  •       Gady Kozma (Weizmann),
  •       Wojciech de Roeck (KU Leuven),
  •       Shannon Starr (Univ. Alabama Birmingham),
  •       Allan Sly (UC Berkeley),
  •       Omer Angel (UBC),
  •       Ron Peled (Tel Aviv University)

 


 

Boris Granovsky (retired) - M

 

  1. Random structures in combinatorics and statistical mechanics(limit shapes, Young diagrams)
  2. Processes of coagulation-fragmentation on the set of integer partitions.
  3. Time dynamics of Markov chains arising in interacting particle systems and queueing systems.

Recent Collaborators

    • Andrew Barbour (Zurich),
          Michael Erlihson
  •       Gregory Freiman (Tel Aviv),
  •       Ljuben Mutafchiev (Sofia),
  •       Dudley Stark (London),
  •       Aleksander Zeifman (Vologda)
 

Dmitry Ioffe- IE&M

 

  1. Stochastic geometry of classical and quantum models of statistical mechanics.
  2. Phase transitions, phase segregation, interacting particle systems, metastability.
  3. Percolation, polymers and random walks in random environment.

Recent Collaborators


    • Anton Bovier (Bonn),
  •       Loren Coquille (Bonn),
  •       Hugo Duminil-Copin (Geneva),
    • Nicholas Crawford (Technion),
  •       Sacha Friedli (Belo Horizonte),
  •       Anna Levit (UBC),
  •       Fabio Toninelli (Lyon),
  •       Balint Toth (Budapest and Bristol),
    • Senya Shlosman (CPT Luminy),
  •       Yvan Velenik (Geneva)
 

Haya Kaspi- IE&M

 

  1. Local times of Markov processes
  2. Permanental processes
  3. Measure valued fluids and diffusions associated with many servers queues

Recent Collaborators

    • Krzysztof Burdzy (Seattle),
  •       Nathalie Eisenbaum (Paris),
    • Jay Rosen (CUNY),
    • Kavita Ramanan (CMU)

 

Oren Louidor- IE&M

 

1.  Interacting particle systems.
2.  Classical statistical mechanics models: Percolation, Ising, Potts, etc.
3.  Branching random walks and the Gaussian free field.
4.  Directed polymers.
5.  Mixing time.
6.  Random walks in random environment.

Recent Collaborators

  •       Marek Biskup (UCLA),
  •       Alexander Vandeberg-Rhodes (UCI),
  •       Ran Tessler (HUJI),
  •       Dima Ioffe (Technion),
  •       Eviatar Procaccia (Weizmann),
  •       Will Perkins (Georgia Tech).
 
 

Avishai Mandelbaum- IE&M

 

  1. Queueing Theory and Science (Fluid, Diffusion and Strong Approximations; Time and State-dependent Models).
  2. Service Engineering of Services (Call/Contact Centers, Hospitals).
  3. Probability and Stochastic Processes (Multi-parameter Processes; Diffusion Processes, Stochastic Calculus; Weak Convergence).
  4. Statistics (Inference for Stochastic Processes; Data Analysis of Large Service Systems).
  5. Stochastic Control (Multiarmed Bandits; Control of Queueing Systems).
 

Emanul Milman- M

 

1.  Isoperimetric, functional and concentration inequalities on weighted Riemannian manifolds.
2.  Bakry-Émery Curvature-Dimension condition and its consequences.
3.  Optimal Transport and the geometry of Wasserstein Space. 
4.  Convexity in Statistical Mechanics. 
5.  Metric Entropy and applications of Majorizing Measures Theorem.

 

Recent Collaborators

    • Franck Barthe,
  •       Bo'az Klartag,
  •       Sasha Sodin

Eddy Mayer-Wolf- M

 

  1. Stochastic Analysis and Malliavin Calculus in Wiener space.
  2. Stochastic Calculus of Variations of non-Gaussian measures.
  3. Coagulation and Fragmentation Processes.
  4. Random Walks in Random Environment.

Recent Collaborators

    • M. Zakai (Technion),
          O. Zeitouni (Minnesota+Weizmann),
  •       A. Cruzeiro (Lisbon),
  •       V.Bogachev (Moscow),
  •       M. Zerner (Tübingen)
 

Leonid Mytnik- IE&M

 

  1. Stochastic partial differential equations.
  2. Measure-valued processes.
  3. Scaling limits of interacting particle systems.

Recent Collaborators

    • Krzysztof Burdzy (University of Washington),
  •       Ed Perkins (UBC),
  •       Rick Durrett (Cornell),
  •       Klaus Fleischmann (WIAS, Berlin),
  •       Jean-Francois Le Gall (Paris-Sud, Orsay),
  •       Achim Klenke (Mainz),
  •       Carl Mueller (Rochester),
  •       Jeremy Quastel (Toronto),
  •       Anja Sturm (University of Delaware),
  •       Jie Xiong (University of Tennessee)

Ross Pinsky- M

 

  1. Probabilistic approaches to spectral theoretical questions concerning second order elliptic operators.
  2. Markov diffusion processes.
  3. Nonlinear parabolic operators---blow-up/or global existence, largest solutions, uniqueness of positive solutions.
  4. Random permutations and random walks on groups.

Recent Collaborators

    • Iddo Ben Ari (Univ. of Connecticut),
  •       Janos Englander (Univ. of Colorado)
 

Adam Shwartz- EE

 

  1. Applications of stochastic processes, mostly to computer communications models.
  2. Large deviations, Markov decision processes, game theory.

Recent Collaborators

  •       A. Leizarowitz (Technion),
  •       R. Atar (Technion),
  •       E. Altman (INRIA),
  •       A. Weiss (Mathworks),
  •       G. Even (Tel-Aviv University)

 


Ron Rosenthal - M

 

  1. Probability theory, analysis, mathematical physics and combinatorics.
  2. Applications of probability theory and combinatorics to simplicial complexes.